BIG IDEAS	EYFS Development Statements	What to look For	Key Vocabulary
CARDINALITY \& COUNTING Counting: saying number words in sequence	22-36 Recites some number names in order $30-50 \mathrm{I}$ can recite numbers in order from 0 to 10 $40-60 \mathrm{I}$ am beginning to count beyond 10 ELG I can count from 0-20 I can order numbers up to 20	- Consistently recite the correct sequence of numbers and cross decade boundaries (19/20 29/30) - Collect nine from a large pile eg nine pencils from a pot - Subitise (instantly recognise) a group that contains up to 4 then 5 , in a range of ways eg. fingers, dice, random arrangement (dots) - Select a numeral to represent a quantity (in a range of fonts) - Correct a puppet who thinks the amount has changed when their collection has been rearranged.	Dual counting
Counting: tagging each object with one number word	30-50 I realise that anything can be counted including steps, claps, jumps. 40-60 I can count up to 3 or 4 objects by saying one number for each item. I can count actions or objects that cannot be moved. I can count objects to 10 . I can count an irregular arrangement of up to 10 objects		
Counting: knowing the last number counted gives the total so far.	22-36 Selects a small number of objects from a group. 40-60 I can count out 6 objects from a larger group. $40-60$ I can add two single digit numbers using objects and quantities		
Subitising: recognising small quantities without needing to count them all.	Perceptual to 4 Perceptual to 5		
Numeral Meanings	30-50 I show an interest in numerals in the environment. 30-50 I know that numbers identify how many objects are in a set (Introduce the concept of 0 as the empty set.) 30-50 I can sometimes match numerals to quantities correctly. 40-60 I can recognise numerals 1 - 5 $40-60$ I can select the correct numeral to represent 1 to 5 objects then 6 to 10 objects.		
Conservation: knowing that the number does not change if things are rearranged (as long as none have been added or taken away)	22-36 Knows that a group of things changes in quantity when something is added or taken away. $30-50$ I can separate a group of 3 or 4 objects in different ways and begin to recognise that the total is still the same.		
COMPARISON More than / Less than	22-36 Begins to make comparisons between quantities (using some language of quantity) $30-50$ I can compare two groups of objects, saying when they have the same number.	- State which group of objects has more - can they do this with a large or small visual difference? - Compare two numbers and say which is the larger. - Predict how many there will be if you add or take away one.	
Identifying groups with the same number of things	ELG I can solve problems that involve sharing objects		
Comparing Numbers and Reasoning	40-60 I can compare two sets of objects using the language of 'more' and 'fewer' NEW ELG: I can compare sets of objects up to 10 in different contexts, considering size and difference.		
Knowing the one more than / one less than relationship between counting numbers.	40-60 I can find one more / one less than a group of objects (up to 10) ELG: I can say which number is one more / one less than a given number to 10 (20)		
COMPOSITION Part - Whole: identifying smaller numbers with a number (conceptual subitising - seeing groups and combining to a total)	Conceptual subitising to 5 $30-50$ I can separate a group of 3 or 4 objects to recognise that the total is still the same.	- Make a reasonable guess at a hidden number. - In context, state two groups that make a larger amount eg how might double sided counters (6) land? - you could have 3 red and 3 yellow. EXCEEDING Children estimate a number of objects and check quantities by counting up to 20 . They solve practical problems that involve combining groups of 2,5 or 10 or sharing into equal groups.	
Inverse Operations	$40-60$ I am beginning to use words involved in adding and subtracting		
A number can be partitioned into more than two numbers.			
Number Bonds: Knowing which pairs make a given number.	NEW ELG: Automatically recall number bonds for numbers 0-5 then 0-10, including corresponding partitioning facts. NEW ELG: Automatically recall double facts up to $5+5$		
PATTERN Continuing an $A B$ pattern Copying an AB pattern	22-36 Notices simple shapes and patterns in pictures 40-60 I can use familiar objects and common shapes to create and recreate patterns.	- Continue, copy and create an $A B$ pattern. - Identify the pattern rule (unit of repeat) in an AB pattern.	

Making an AB pattern Spotting an error in an AB pattern Identifying the unit of repeat	ELG: I can recognise, describe and create patterns.
Continuing an $A B C$ pattern Continuing a pattern which ends mid-unit Make ABB, ABBC patterns Spotting an error in an ABB pattern Symbolising the unit structure Generalising structures to another context or mode Make a pattern which repeats round a circle Making a pattern round a boarder with a fixed number of spaces. Pattern-spotting around us	$40-60$ I can record using marks that I can interpret and explain
SHAPE \& SPACE Developing spatial awareness: experiencing different viewpoints	30-50 I can show an interest in shape and space by playing with shapes or making arrangements with objects. $30-50$ I can show awareness of similarities of shapes in the environment.
Developing Spatial Vocabulary	30-50 I can use positional language $40-60$ I can describe my relative position e.g. behind, next to
Shape Awareness: developing shape awareness through construction	30-50 I can show interest in shape by sustained construction activity or talking about shapes or arrangements. 40-60 I can use familiar objects and common shapes to create and recreate patterns and models.
Representing spatial relationships	30-50 I can show interest in shapes in the environment
Identifying similarities between shapes	30-50 I can show awareness of similarities of shapes in the environment. 30-50 I can use shapes appropriately for tasks.
Showing awareness of properties of shape	30-50 I am beginning to talk about the shape of everyday objects e.g. round, tall
Describing Properties of shape	I am beginning to use mathematical names for 'solid' 3D shapes and mathematical terms to describe them i.e. faces, edges, vertices I am beginning to use mathematical names for 'flat' 2D shapes and mathematical terms to describe them i.e. sides, corners
Developing an awareness of relationships between shapes	40-60 I can select a particular named shape ELG: I can explore characteristics of everyday objects and shapes and use mathematical language to describe them.
MEASURES Recognising Attributes	22-36 Beginning to categorise objects according to properties such as size. 22-36 Begins to use the language of size.
Comparing Amounts of continuous quantities	40-60 I can order two or three items by height or length I can order two items by weight or capacity
Showing awareness of comparison in estimating and predicting	
Comparing Indirectly	
Recognising the relationships between the size and number of units	$40-60$ I can estimate how many objects I can see and check by counting. ELG: I can use everyday language to talk about, compare and solve problems related to size I can use everyday language to talk about, compare \& solve problems related to weight I can use everyday language to talk about, compare \& solve problems related to capacity
Beginning to use units to compare things	

- Continue copy and create an ABB, ABBC etc
- Identify the pattern rule (unit of repeat) in an ABB, ABBC etc patterns
- Spot an error and 'correct' a pattern.
- Explain whether a circular pattern is continuous or not.
- Select and rotate shapes to fit into a given space.
- Use positional vocabulary, including relative terms, to describe where things are in smallworld play
- Show intentionality in selecting shapes for a
purpose, such as cylinders to roll.
- Make a range of constructions, including enclosures, and talk about the decisions they have made.
- See shapes in different orientations and
recognise that they are still the same shape
- Recognise a range of triangles and say how they know what they are.
- Find something that is longer, shorter, heavier, lighter etc than a reference item.
- Find an appropriate container for a specific
- Describe the location of something using
positional language.
- Accurately use the relative terms 'yesterday'
and 'tomorrow'
- Order a short sequence of events.

EXCEEDING

Children estimate, measure, weigh and compare and order objects and talk about properties, position and time

I am beginning to use everyday language related to money. (Unitising / Recognition of coins to 10p)	
I can solve problems that involve	
halving	
I can subtract two single digit	
numbers using objects and quantities	

Beginning to use time to sequence events	22-36 Understands some talk about immediate past and future. 22-36 Anticipates specific time-based events such as meal-times or hometime. 40-60 I can order and sequence familiar events I use everyday language related to time
Beginning to experience specific time durations	40-60 I can measure short periods of time in simple ways ELG: I can use everyday language to talk about, compare and solve problems related to time

ECMG proposed Numbers Goal
 numbers are made up of other numbers.
They notice, copy, continue and create patterns.
They solve practical problems including: adding, subtracting and sharing.
Children communicate their mathematical thinking in a range of ways.
ECMG proposed Shape, space and measures
Children make comparisons in relation to size, length, weight, capacity, time, money and position.
They explore characteristics of everyday objects and shapes, including making constructions and pictures.
They notice, copy, continue and create patterns.
They solve problems and communicate their mathematical thinking in a range of ways

They solve problems and communicate their mathematical thinking in a range of ways
I am starting to identify my own mathematical problems based on interests and fascinations
I am beginning to represent numbers using fingers, marks on paper or pictures
I show an interest in representing numbers.
I can create and experiment with symbols and marks representing ideas of number
I show interest in number problems
I show curiosity about numbers by offering comments or asking questions

