

10a. I know I can add numbers in any order and reach the same total [Commutative Law]	10b. I know I cannot change the order of numbers when subtracting	10c. I recognise odd and even numbers up to 100
		10 d . I can find different combinations of coins that equal the same amount of money.
		10e. I can find the change when using $£$ and p (up to $£ 1.00$)
11a. I can explain the inverse to check addition and subtraction calculations using a PPW/Bar Model model		13a. I can reason about associated facts for at least 4 number bonds to 10 (e.g. fact family) (w)
		13b. I can recall number bonds within 10 and use these to reason with and calculate bonds within 20 (e.g. 7$3=4$, then $17-3=14$) (E)
12a. Greater Depth - I can use reasoning about numbers and relationships to solve more complex problems and explain my thinking (e.g. $29+17=15+4+\quad$;'Together Jack and Sam have $£ 14$. Jack has $£ 2$ more than Sam. How much money does Sam have? etc) (GD)		
13a. I can reason about associated facts for at least 4 number bonds to 10 (e.g. fact family) (w)	13b. I can reason about associated facts for all number bonds to 10 and 20 (e.g. fact family)	$\begin{aligned} & \text { 7a. I can recall number bonds to } 10 \text { and use these to reason with and calculate bonds to } 20 \text { (e.g. if } 7+3=10 \text {, } \\ & \text { then } 17+3=20 \text {) (E) }\end{aligned}$
		7b. I can recall number bonds within 10 and use these to reason with and calculate bonds within 20 (e.g. 7-3=4, then $17-3=14$) (E)
14a. I can write multiplication calculations using x and $=$ from the stem sentence There are __equal groups with in each group. There are \qquad altogether.	14b. I can write division calculations using \div and $=$	14c. I can compare measures using multiples e.g. twice as heavy, half as tall
		14c. I multiply using repeated addition
		14d.I can expand a multiplication sentence into a repeated addition sentence.
		14e. I can count on and back in twos, fives and tens from 0 and 100
		14f. I can count in twos, fives and tens from zero and use this to solve problems (w)
		14 g . I can count on in 3 s from zero
		14h. I can count back in 3 s to zero
15a. I can generalise about multiplying by 0 and 1	15b. I can generalise about dividing a number by 1	
16a. I know I can multiply in any order and reach the same answer [Commutative Law]	16b. I can use multiplication to solve division problems.	16c. I multiply using repeated addition e.g. $10 \times 4=10+10+10+10$
17a. I can draw or make an array to solve multiplication e.g. 5×3	17b. I can solve multiplication problems mentally using times tables facts $(2,5,10)(E)$	17c. I multiply using repeated addition e.g. $10 \times 4=10+10+10+10$
18a. I can use an array to help me solve division problems	*18b. I can solve division problems mentally using times tables facts $(2,5,10)(E)$	18. I I can divide by grouping using resources
19a. Greater Depth - of 5) Solve word problems with more than one step (e.g. which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet) (GD)		
20a. I can estimate and measure length and height using centimetres and metres ($\mathrm{cm} \& \mathrm{~m}$)		20. I an compare measures using multiples e.g. twice as heavy, half as tall
		20d. I can compare measurements of the same unit and say which is smallest and greatest
		20e. I can order a set of measurements of the same unit from smallest to greatest
		5a. I can add 1-digit numbers to 2-digit numbers with no regrouping, explaining my method verbally, in pictures or using resources (w)
		6a. I can subtract 1-digit numbers from 2-digit numbers efficiently with no regrouping, explaining my method verbally, in pictures or using resources (w)
		7a. I can recall number bonds to 10 and use these to reason with and calculate bonds to 20 (e.g. if $7+3=10$, then $17+3=20$) (E)
		7b. I can recall number bonds within 10 and use these to reason with and calculate bonds within 20 (e.g. $7-3=4$, then $17-3=14$) (E)
21a. I can estimate and measure capacity in millilitres and litres (ml \& I)	21b. I can estimate and measure mass in grams and kilograms ($\mathrm{g} \& \mathrm{~kg}$)	21c. I can compare measures using multiples e.g. twice as heavy, half as tall
		21d. I can compare measurements of the same unit and say which is smallest and greatest
		21e. I can order a set of measurements of the same unit from smallest to greatest
		7a. I can recall number bonds to 10 and use these to reason with and calculate bonds to 20 (e.g. if $7+3=10$, then $17+3=20$) (E)
		7b. I can recall number bonds within 10 and use these to reason with and calculate bonds within 20 (e.g. $7-3=4$, then $17-3=14$) (E)
22a. I can identify simple fractions of shapes, and know that all parts must be equal e.g, $\frac{1}{2}, \frac{1}{4}$ (E)	22b. I can identify simple fractions of a quantity, and know that all parts must be equal e.g. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{3}{4}$ (E)	22 c . I can place simple fractions on a number line e.g. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{3}{4}$

Fluency		
8 b . I can read and write numerals to 100 (w)	29b. I can recognise and use symbols for pounds ($£$) and pence (p)	33b. I know there are 60 minutes in one hour and 24 hours in a day
7 w . I can read numbers to 100 in words	1a. I can count in twos, fives and tens from zero and use this to solve problems (w)	30 w . I can compare intervals of time e.g. which is longer - 60 minutes or half an hour? A week or 4 days?
7s. I can write numbers to 100 in words	7a. I can recall number bonds to 10 and use these to reason with and calculate bonds to 20 (e.g. if $7+3=10$, then $17+3=20$) (E)	30s. I can sequence intervals of time e.g. 20 seconds, 1 minute, 2 hours, 1 day
1a. I can partition a two-digit number into tens and ones with resources (w)	7b. I can recall number bonds within 10 and use these to reason with and calculate bonds within 20 (e.g. $7-3=4$, then $17-3=14$) (E)	37b. I know that a turn (rotation) can be clockwise or anti-clockwise
1b. I know the value of each digit in any 2 -digit number in 10 s and 1s (E)	13a. I can reason about associated facts for at least 4 number bonds to 10 (e.g. fact family) (w)	34s. I know that a quarter turn (rotation) is the same as a right angle
18 b . I can recall at least 4 number bonds to 10 (w)	13 b . I can recall number bonds within 10 and use these to reason with and calculate bonds within 20 (e.g. $7-3=4$, then $17-3=14$) (E)	34 w . I can recognise a whole turn, half turn, quarter turn and three-quarter turn
15 w . I can recall all number bonds to 10	5a. I can add 1-digit numbers to 2-digit numbers with no regrouping, explaining my method verbally, in pictures or using resources (w)	33s. I can use maths vocabulary to describe movement e.g. forward two squares
15s. I can recall all number bonds within 10	6 a . I can subtract 1-digit numbers from 2-digit numbers efficiently with no regrouping, explaining my method verbally, in pictures or using resources (w)	33 w . I can use maths vocabulary to describe direction e.g. left, right, forward, back
26 w . I know the value of different coins (w)	32b. I can draw the hands on a clock to show o'clock and half-past	36b. I can use maths vocabulary to describe position e.g. two squares to the left

