Maths Target Sheet – Stage 5					
WTS (5.0-5.2)	EXS (EXS (5.3 - 5.4)			
Big Ideas		Connections			
*1a. I know the value of digits in 7-digit numbers e.g. value of 7 in 276,541		*1c. I can read and write numbers to at least 1,000,000 (7-digits)			
*2a. I understand negative numbers in context <i>e.g. temperature</i>		*2c. I can count forwards and backwards from negative whole numbers, through zero, to positive who 2, 3, 4, 5,			
*3a. I can order numbers to at least 1,000,000	*3b. I can compare numbers to at least 1,000,000	*3c. I can read and write numbers to at least 1,000,000 (7-digits)			
4a. I can round any number to 1,000,000 to the nearest 1000, 10,000	4b. I can round any number to 1,000,000 to the nearest 100,000	*4c. I can read and write numbers to at least 1,000,000 (7-digits)			
		4d. I can round any number to 1,000,000 to the nearest 10, 100			
		4e. I can use rounding to check answers to addition and subtraction calculations and determine, in the accuracy			
5a. I can find the rule to describe number sequences		*5c. I can read and write numbers to at least 1,000,000 (7-digits)			
*6a. I can solve addition multi-step problems in contexts, deciding which operations and methods to use and why	*6b. I can solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why	 6c. I can solve number problems that involve the objectives above 6d. I can use rounding to check answers to calculations and determine, in the context of a problem, let 			
		bu. I can use rounding to check answers to calculations and determine, in the context of a problem, let			
		*6e. I use formal written methods to add whole numbers with more than 4 digits			
		*6f. I can use formal written methods to subtract whole numbers with more than 4 digits with 2 or more exchanges			
		*6g. I can add numbers mentally with increasingly large numbers using place value to help <i>e.g. 12,4</i>			
		*6h. I can subtract numbers mentally with increasingly large numbers <i>e.g.</i> $12,462 - 2,300 = 10,162$			
		6i. I can calculate the perimeter of a shape made of rectangles when there are missing measurements			
*7a. I can simplify mental calculations by manipulating the commutative law <i>e.g.</i> $53 - 82 + 47 = 53 + 47 - 82 = 100 - 18$	*7b. I can manipulate calculations to make them simpler to calculate (same difference/adjusting/compensating)	*7c. I can choose the most efficient operation to use to solve problems involving addition, subtraction,			
*8a. I can multiply TO x TO using long multiplication	*8b. I can multiply HTO x TO using long multiplication Th H T O 1 2 4 x 2 6 7 ¹ 4 ² 4 2 4 2 4 2 6	8c. I can pattern spot and make generalisations about my times tables 8d. I can use estimation with the 4 operations			
*9a. I can multiply and divide whole numbers by 10, 100, 1000 <i>e.g.</i>	*9b. I can multiply and divide decimal numbers by 10, 1000 <i>e.q.</i>	9c. I can use powers of 10 to simplify decimal multiplication			
$134,500 \div 100 = 1345$ *10a. I can divide ThHTO ÷ O using short division <i>e.g.</i> 2352 ÷ 6	$2764.5 \div 10 = 276.45$ *10b. I can divide ThHTO ÷ O using short division and interpret	10c. I can pattern spot and make generalisations about my times tables			
	remainders appropriately for the context <i>e.g. How many standard egg-boxes will you need to pack 1000 eggs?</i>	Tot. I can pattern spot and make generalisations about my times tables			
*11a. I can identify multiples of 1-digit numbers <i>e.g. 49 is a multiple of 7</i>	*11b. I can identify common multiples of two numbers <i>e.g. 6 is a multiple of 2 and 3</i>	8c.I can pattern spot and make generalisations about my times tables			
*12a. I can find factor pairs of a number <i>e.g. 1 & 12, 2 & 6, 3 & 4 for 12</i>	*12b. I can identify common factors of two numbers <i>e.g. 6 is a factor of</i> 18 and 60	8c.I can pattern spot and make generalisations about my times tables			
13a. I use the terms factor and multiple when describing composite (non- prime) numbers <i>e.g.</i> "10 is a multiple of 2, 5 and 10. Its factors are 1, 2, 5 and 10".	13b. I can explain prime numbers using the terms factor and multiple <i>e.g.</i> 13 is a prime number because it has only two factors. It's a multiple of only 1 and 13.	13c. I can explain and calculate prime factors for numbers to 30 <i>e.g.</i> The factors of 18 are 1, 2, 3, 6, 9 3 because $2 \times 3 \times 3 = 18$			
*14a. I can build and recognise square numbers and the notation for squared numbers (²)	14b. I can build and recognise cube numbers and the notation for cubed numbers (³)	14c. I can construct equivalence statements with squared numbers <i>e.g.</i> $3 \times 270 = 3 \times 3 \times 9 \times 10 = 9^2$.			
		14d. I can estimate the volume of a cuboid made from 1cm ³ cubes			
15a. I can work out and then recall prime numbers up to 19	*15b. I can establish whether a number up to 100 is prime				
16a. I can solve multiplication problems involving brackets <i>e.g.</i> 5(4+7)		16c. I can construct equivalence statements <i>e.g.</i> 4 x 35 = 2 x 2 x 35			
*17a. I can solve problems using a combination of addition, subtraction, multiplication and division.	*17b. I can solve problems involving multiplication and division including scaling by simple fractions <i>e.g. Adapt for ¼ of the amount</i>	 *17c. I can solve problems involving multiplication and division and problems involving simple rates 17d I can solve problems involving converting between units of time 			
18a. I can use estimation with the 4 operations	18b. I can use estimation with measure				
*19a. I can compare fractions whose denominators are all multiples of the same number	*19b. I can order fractions whose denominators are all multiples of the same number				
20a. I can represent mixed numbers and improper fractions e.g. $3\frac{1}{2}$ or $\frac{15}{4}$	20b. I can write mathematical statements using mixed and improper fractions e.g. $\frac{2}{5} + \frac{4}{5} = \frac{6}{5} = 1\frac{1}{5}$	20c. I can convert mixed numbers to improper fractions e.g. $4\frac{1}{3} = \frac{13}{3}$			
*21a I can add fractions with denominators that are multiples of the same number <i>e.g.</i> $\frac{1}{4} + \frac{1}{8}$ (Use equivalent fractions)	*21b. I can subtract fractions with denominators that are multiples of the same number e.g. $\frac{4}{6} - \frac{1}{3}$	21c. I can add fractions with the same denominator			
*22a. I can write decimal numbers as fractions e.g. $0.71 = \frac{71}{100}$	6 3	22c. I can describe decimal numbers as tenths or hundredths (Dual counting)			
23a. I can multiply proper fractions, decimals and percentages by whole numbers supported by different representations <i>e.g.</i> $\frac{1}{2} \times 6$	23b. I can multiply mixed numbers by whole numbers supported by different representations e.g. $2\frac{2}{r} \times 4$				
24a. I can recognise the relationship between tenths, hundredths and thousandths	24b. I can use the relationship between tenths, hundredths and thousandths	*24c. I can read and write numbers with up to 3 decimal places			

GDS (5.5)	
hole numbers <i>e.g4, -3, -2, -1, 0, 1,</i>	
he context of a problem, levels of	
levels of accuracy	
TTh H T O 4 7 3 8 2 + 2 8 1 0 5 0 1 9 2 % % %	
more Th Th H T O 34, 90, 13 8 2 - 2 8 1 0 - 2 8 1 0 - -	
,462 + 2300 = 14,762	
,	
ts	
n, multiplication and division.	
, 9, 18. So the prime factors are 2 and	
<i>P² x 10</i>	

		*24d. I can divide numbers ThHTO \div O and express remainders as a fraction or decimal e.g. 98 \div 4 = 24 r2 = 24 $\frac{2}{4}$ = 24.5	
		24e. I can solve problems involving number up to 3 decimal places	
*25a. I can order numbers with up to 3 decimal places	*25b. I can compare numbers with up to 3 decimal places	25c. I can solve problems involving number up to 3 decimal places	
26a. I can round decimals with 2 decimal places to the nearest whole number	26b. I can round decimals with 2 decimal places to 1 decimal place (1dp)	26c. I can solve problems involving number up to 3 decimal places	
*27a. I can write percentages as a fraction with a denominator 100 <i>e.g.</i>	*27b. I can write percentages as a decimal <i>e.g. 38% = 0.38</i>	27c. I recognise the per cent symbol (%) and understand that percent relates to 'number of parts per 100'	
28a. I can measure and estimate perimeter	28b. I can estimate and calculate area	*28c. I can estimate the area of irregular shapes in square centimetres (cm ²) or square metres (m ²)	
*29a. I can measure angles in degrees (°) using a protractor	*29b. I can draw given angles using a protractor	29c. I can know angles are measured in degrees	
30a. I can identify angles at a point and 1 whole turn (total 360°)	30b. I can identify angles at a point on a straight line and half a turn (total 180°)	30c. I know a quarter turn is 90° and a three-quarter turn is 270°	
31a. I can estimate and compare acute and obtuse angles	31b. I can estimate and compare reflex angles		
32a. I can use the properties of other quadrilaterals to work out missing lengths <i>e.g. rhombus has 4 equal edges</i>	32b. I can use the properties of quadrilaterals to work out missing angles e.g. trapezium's interior angles add up to 360°	32c. I can identify cubes and other cuboids from 2-D representations	
		*6g. I can add numbers mentally with increasingly large numbers using place value to help $e.g. 12,462 + 2300 = 14,762$	
		*6h. I can subtract numbers mentally with increasingly large numbers <i>e.g.</i> 12,462 – 2,300 = 10,162	
33a. I can reflect a shape in a horizontal or vertical axis and describe its transformation knowing that its shape hasn't changed	33b. I can translate a shape in the first quadrant and describe its transformation knowing that its shape hasn't changed	33c. I can work out if a shape has been reflected or translated	
34a. I can solve problems by comparing data in a line graph	34b. I can solve sum and difference problems using data in a line graph	*34c. I can read and interpret information in timetables	
		*6g. I can add numbers mentally with increasingly large numbers using place value to help <i>e.g.</i> 12,462 + 2300 = 14,762	
		*6h. I can subtract numbers mentally with increasingly large numbers <i>e.g. 12,462 – 2,300 = 10,162</i>	

Fluency			
34. I can read Roman numerals up to 1,000 (M)	40. I can find the rule to describe number sequences	*46. I can establish whether a number up to 100 is prime	
35. I can read years written in Roman numerals <i>e.g. MMXV = 2015</i>	*41. I can solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why	*47. I can identify common multiples of two numbers <i>e.g. 6 is a multiple of 2 and 3</i>	
36. I can count forwards in steps of powers of 10 <i>e.g. 10, 100, 1000, 10,000</i> from zero	42. I can use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	*48. I can identify common factors of two numbers <i>e.g. 6 is a factor of 18 and 60</i>	
37. I can choose the most efficient strategy to add and subtract mentally (partitioning / , doubles/near doubles , bridging , friendly numbers , adjusting , and same difference ,)	*43. I can multiply HTO x TO using long multiplication Th H T 0 1 2 4 2 6 71 4 ² 4 2 4 8 0 3 2 2 4 1 1	*49. I can solve problems which require knowing decimal equivalents of $\mathscr{V}_2, \mathscr{V}_4, \mathscr{V}_5, \mathscr{V}_5$	
*38. I use formal written methods to add whole numbers with more than 4 digits	*44. I can multiply and divide whole numbers by 10, 100, 1000 <i>e.g. 134,500 ÷ 100 = 1345</i>	*50. I can solve problems which require knowing percentage equivalents of $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{4}{5}$	
*39. I can use formal written methods to subtract whole numbers with more than 4 digits with 2 or more exchanges	*45. I can multiply and divide decimal numbers by 10, 100, 1000 <i>e.g. 2764.5</i> ÷ 10 = 276.45	51. I can understand and use approximate equivalences between metric and imperial units.	
52. I can convert between units of time			