

four operations		$\div 1000=0.024$
		*4a. I can multiply ThHTO \times TO using long multiplication
		4b. I can multiply 0.th $\times 0$ e.g. $£ 1.42 \times 2=£ 2.84$
		*5a. I can divide ThHTO \div TO using short division with remainders
		7c. I can divide ThHTO \div TO using long division, interpreting remainders as fractions e.g. $432 \div 15=28 \frac{12}{15}$ or $28 \frac{4}{5}$
		*7d. I can estimate the answer to a calculation problem and determine, in the context of a problem, a degree of accuracy
		7e. I can identify common multiples of two numbers e.g. common multiples of 4 and 6 are $12,24,36 \ldots$
		7f. I can identify common factors of two numbers e.g. 5 and 7 are both common factors of 35 and 105
8a. I use my knowledge of the order of operations [BIDMAS] to carry out calculations e.g. $(8-3)+5 \times 6=35$		*8c. I can simplify mental calculations by manipulating the distributive law e.g. $53 \div 7+3 \div 7=(53+3) \div 7$ $=56 \div 7=8$
		8d. I can identify common multiples of two numbers e.g. common multiples of 4 and 6 are 12, 24, 36...
		8e. I can identify common factors of two numbers e.g. 5 and 7 are both common factors of 35 and 105
*9a. I can multiply simple pairs of fractions e.g. $\frac{1}{4} x \frac{1}{2}=\frac{1}{8}$	9b. I can divide proper fractions by whole numbers e.g. $\frac{1}{3} \div$ $2=\frac{1}{6}$	9c. I understand how fractions link to division e.g. $\frac{2}{5}$ is $2 \div 5$
${ }^{*} 10 \mathrm{a}$. I can add and subtract fractions when both denominators are different using equivalent fractions to help e.g. $\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$	10b. I can use common factors to simplify fractions e.g. $\frac{18}{30}$ simplifies to $\frac{3}{5}$ as 6 is a common factor	10c. I can identify common multiples of two numbers e.g. common multiples of 4 and 6 are $12,24,36 .$.
		10 d . I can identify common factors of two numbers e.g. 5 and 7 are both common factors of 35 and 105
		10 e . I can compare fractions with different denominators using < > = symbols
		10f. I can order fractions with different denominators, including those greater than 1
		10 g . I can use common multiples to express fractions in the same denomination e.g. $\frac{1}{2}+\frac{1}{8}=\frac{5}{8}$
11a. I can calculate decimal equivalents for a simple fraction e.g. $\frac{3}{8}=0.375$		*11c. I I know the fraction, decimal and percentage equivalents for all halves, quarters, fifths and tenths
		${ }^{*} 11$ d. I I know the fraction, decimal and percentage equivalents for all sixths and eighths e.g. $\frac{5}{8}=0.625=62.5 \%$
		11e. I can compare fractions with different denominators using < > = symbols
12a. I can solve problems involving calculation of percentages e.g. 15% of 360 for a pie chart	${ }^{} 12 \mathrm{~b}$. I can find percentages of quantities	3a. I can multiply and divide decimal numbers by $10,100,1000$ giving answers to three decimal places e.g. 23.6 $\div 1000=0.024$
		*12c. I know the fraction, decimal and percentage equivalents for all sixths and eighths e.g. $\frac{5}{8}=0.625$ $=62.5 \%$
		*12d. I know the fraction, decimal and percentage equivalents for all halves, quarters, fifths and tenths
*13a. I can compare relative proportions by comparing the parts to the whole ["in every"] e.g. 3 red marbles in a bag of 10 compared to 7 red marbles in a bag of 20.	*13b. I can solve problems with simple ratios ["for every"] e.g. share 10 sweets in the ratio $2: 3$	13c. I can solve problems involving unequal sharing and grouping using knowledge of fractions and multiples e.g. $\frac{3}{5}$ of the class are boys
		13d. I can solve problems involving metres per second
		13e. I can solve problems involving miles per hour
		13f. I can convert between miles and kilometres using the approximate equivalence of 1 mile $=1.6 \mathrm{~km}$
		13g. I can solve problems involving similar shapes where the scale factor is known or can be found
14a. I can describe linear number sequences algebraically e.g. $2,5,8=3 n+2$	${ }^{} 14$ b. I can generate linear number sequences e.g. $2 n+1=$ $1,3,5,7,9 .$.	14c. I can express missing number problems algebraically e.g. $5 \times \square=35$ can be expressed as $5 n=35$
		14d. I can find pairs of numbers that satisfy an equation with two unknowns e.g. $x+y=13$
15a. I can draw 2-D shapes using given dimensions and angles and also label with correct notation	${ }^{*} 15$ b. I can compare and classify geometric shapes based on their properties	15c. I can solve problems involving similar shapes where the scale factor is known or can be found
16a. I can construct and name 3-D shapes using resources	16b. I can construct nets for simple 3-D shapes e.g. cubes, pyramids, prisms	16c. I can solve problems involving similar shapes where the scale factor is known or can be found
*17a. I can calculate the volume of a cuboid using $\mathrm{V}=\mathrm{a} \times \mathrm{b}$ x c	*17b. I can compare the volume of cubes and cuboids in cm^{3} and m^{3}	*6a. I can simplify mental calculations by manipulating the distributive law e.g. $20 \times 7 \times 5=20 \times 5 \times 7=100 \times 7$ $=700$
		4b. I can multiply 0.th $\times 0$ e.g. $£ 1.42 \times 2=£ 2.84$
18a. I can illustrate and name parts of circles including radius, diameter and circumference	18b. I know that the diameter of a circle is twice the radius and can use $d=2 \times r$ to calculate lengths of parts of circles	18c. I can express missing number problems algebraically e.g. $5 \times \square=35$ can be expressed as $5 n=35$

Fluency		
*24. I can use all four operations effectively and efficiently	*29. I know the fraction, decimal and percentage equivalents for all halves, quarters, fifths and tenths	34. I can convert between smaller and larger units of time remembering to work in base 60 e.g. 145 minutes $=$ 2hrs 25mins
25. I can simplify mental calculations by manipulating the distributive law e.g. $20 \times 7 \times 5=20 \times 5 \times 7=100 \times 7=700$	30. I can construct line graphs to show conversions between units e.g. miles to kilometres, kilograms to pounds	35. I can perform mental calculations with mixed operations and larger numbers e.g. (54 x 8) - 222
26. I can identify some prime numbers above 100	31. I can convert between miles and kilometres using the approximate equivalence of 1 mile $=1.6 \mathrm{~km}$	36. I know the fraction, decimal and percentage equivalents for all sixths and eighths e.g. $\frac{5}{8}=0.625=62.5 \%$
27. I can describe linear number sequences algebraically e.g. $2,5,8=3 n+2$	32. I can generate linear number sequences e.g. $2 n+1=$ $1,3,5,7,9 \ldots /$	37. I can perform mental calculations with mixed operations e.g. $(12 \times 6)+(8 \times 7)$
28. I can manipulate calculations to make them easier to solve E.g. $3224 \div 16$ "If you double the dividend and half the devisor, the quotient will remain the same"	33. I can identify common multiples of two numbers e.g. common multiples of 4 and 6 are 12, 24, 36...	38. I can identify common factors of two numbers e.g. 5 and 7 are both common factors of 35 and 105

